[1]
[1] Philbrick CT, Les DH. Evolution of aquatic angiosperm reproductive systems: what is the balance between sexual and asexual reproduction in aquatic angiosperms?[J]. Bio Science, 1996, 46(11): 813-826.
[2] 王胜男. 三种生活型水生植物气孔适应性特征及相关基因表达调控机制[D]. 武汉: 武汉大学, 2019: 1-2.
[3] Cook CDK. Aquatic Plant Book[M]. Netherlands: SPB Academic Publishing, 1990: 228.
[4] Arber A. On heterophylly in water plants[J]. Am Nat, 1919, 53(626): 272-278.
[5] Huang WM, Han SJ, Xing ZF, Li W. Responses of leaf anatomy and CO2 concentrating mechanisms of the aqua-tic plant Ottelia cordata to variable CO2[J]. Front Plant Sci, 2020, 11(2020): 1261.
[6] Huang LJ, Liu YC. Understanding diversity in leaf shape of Chinest sagittaria (Allsmataceae) by geometric tools[J]. Pak J Bot, 2014, 46(6): 1927-1934.
[7] Zotz G, Wilhelm K, Becker A. Heteroblasty: a review[J]. Bot Rev, 2011, 77(2): 109-151.
[8] Pigliucci M. Phenotypic Plasticity: Beyond Nature and Nurture[M]. Baltimore: JHU Press, 2001: 1-29.
[9] Marcus ASMGY. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibiousplant Nuphar lutea[J]. Photosynth Res, 2006, 90(3): 233-242.
[10] Maberly SC, Madsen TV. Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3-[J]. Funct Ecol, 1998, 12(1): 99-106.
[11] Maberly SC, Gontero B. Ecological imperatives for aquatic CO2-concentrating mechanisms[J]. J Exp Bot, 2017, 68(14): 3797-3814.
[12] Jackson MB. Ethylene and responses of plants to soil waterlogging and submergence[J]. Plant Physiol, 1985, 36(1): 145-174.
[13] Browse JA, Dromgoolea AFI, Browna JMA. Photosynthesis in the aquatic macrophyte Egeria densa.Ⅲ . Gas exchange studies[J]. Funct Plant Biol, 1979, 6(4): 499-512.
[14] Black MA, Maberly SC, Spence DHN. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes[J]. New Phytol, 1981, 89(4): 557-568.
[15] Madsen TV, Maberly SC. Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate[J]. Freshw Biol, 1991, 26(2): 175-187.
[16] Sand-Jensen K, Frost-Christensen H. Plant growth and photosynthesis in the transition zone between land and stream[J]. Aquat Bot, 1999, 63(1): 23-35.
[17] Maberly SC, Gontero B. Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments[M]//Adams WW III, Terashima I, eds. The Leaf: A Platform for Performing Photosynthesis. Chambridge: Springer Cham, 2018: 307-343.
[18] Iida S, Ikeda M, Amano M, Sakayama H, Kadono Y, et al. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus[J]. J Plant Res, 2016, 129(5): 853-862.
[19] Sculthorpe CD. Biology of Aquatic Vascular Plants[M]. London:Edward Arnold, 1967: 92-149.
[20] Maberly SC, Spence DHN. Photosynthesis and photorespiration in freshwater organisms: amphibious plants[J]. Aquat Bot, 1989, 34(1-3): 267-286.
[21] Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance[J]. Plant Physiol, 2005, 139(1): 497-508.
[22] Robe WE, Griffiths H. Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora[J]. New Phytol, 1998, 140(1): 9-23.
[23] Wang SN, Li PP, Liao ZY, Wang WW, Chen T,et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot, 2022, 196(2022): 104818.
[24] Iversen LL, Winkel A, Baastrup-Spohr L, Hinke AB, Alahuhta J, et al. Catchment properties and the photosynthetic trait composition of freshwater plant communities[J]. Science, 2019, 366(6467): 878-881.
[25] Zhang Y, Yin L, Jiang HS, Li W, Gontero B, et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosyn Res, 2014, 121(2):285-297.
[26] Huang WM, Shao H, Zhou SN, Zhou Q, Fu WL,et al. Different CO2 acclimation strategies in juvenile and mature leaves of Ottelia alismoides[J]. Photosyn Res, 2018, 138(2):219-232.
[27] Hussner A, Mettler-Altmann T, Weber APM, Sand-Jensen K. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users[J]. Freshw Biol, 2016, 61(10): 1720-1732.
[28] Casati PV, Lara MS, Andreo C. Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species[J]. Plant Physiol, 2000, 123(4):1611-1622.
[29] Wells CL, Pigliucci M. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants[J]. Perspect Plant Ecol Evol Syst, 2000, 3(1): 1-18.
[30] Horiguchi G, Nemoto K, Yokoyama T, Hirotsu N. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Hygrophila difformis[J]. AoB Plants, 2019, 11(2): plz009.
[31] Minorsky PV. The Hot and the Classic[J]. Plant Physiol, 2002, 128(4): 1167-1168.
[32] Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche pa-lustris L.[J]. Plant Cell, 2021, 33(10): 3272-3292.
[33] Kim J, Joo Y, Kyung J, Jeon M, Park JY, et al. A mole-cular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus[J]. PLoS Genet, 2018, 14(2): e1007208.
[34] Wellburn AR, Lichtenthaler H. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Adv Photo Res, 1984,Ⅱ : 9-12.
[35] James SA, Bell DT. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae)[J]. Aust J Bot, 2001, 49(2): 259-269.
[36] Maberly SC, Spence DHN. Photosynthetic inorganic carbon use by freshwater plants[J]. J Ecol, 1983(71): 705-724.
[37] Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light[J]. J Exp Bot, 2017, 68(14): 3985-3995.
[38] Montero F. Photosynthetic pigments[M]//Muriel G, William MI, Ricardo A, Henderson JCII, Daniele P, eds. Encyclopedia of Astrobiology. 2nd. Berlin:Springer,2015:1883-1884.
[39] Li X, He D, Guo Y. Morphological structure and physiological research of heterophylly in Potamogeton octandrus[J]. Plant Sys Evol, 2019, 305(3): 223-232.
[40] Klimenko EN. Structural and functional aspects of the Nuphar lutea (L.) Smith heterophylly: ultrastructure and photosynthesis[J]. Cytol Genet, 2012, 46(5): 272-279.
[41] Ueno O. Structural characterization of photosynthetic cells in an amphibious sedge, Eleocharis vivipara, in relation to C3 and C4 metabolism[J]. Planta, 1996, 199(3): 382-393.
[42] Li G, Hu S, Hou H, Kimura S. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants[J]. Plants, 2019, 8(10): 420-420.
[43] 董如磊, 喻方圆, 欧阳献. 遮荫对东京野茉莉幼苗叶片形态和解剖结构的影响[J]. 江西农业大学学报, 2010, 32(5): 974-981. Dong RL, Yu FY, Ouyang X. Effects of shading treatments on leaf morphology and anatomical structure of styrax tonkinensis seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(5): 974-981.
[44] Kordyum E, Mosyakin S, Ivanenko G, Ovcharenko Y, Brykov V. Hydropotes of young and mature leaves in Nuphar lutea and Nymphaea alba (Nymphaeaceae): formation, functions and phylogeny[J]. Aquat Bot, 2021, 169(2021): 103342-103342.
[45] Colmer TD, Winkel A, Pedersen O. A perspective on underwater photosynthesis in submerged terrestrial wetland plants[J]. AoB Plants, 2011:plr030.
[46] Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
[47] Gross LJ, Kirschbaum MUF, Pearcy RW. A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation[J]. Plant Cell Environ, 1991, 14(9): 881-893.
[48] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J] Annu Rev Plant physiol, 1982, 33(1):317-345.
[49] Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951): 901-908.
[50] 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. Yang KT, Chang HL, Cheng GP, Yu XY, Xian JR. Stomatal traits of main greening plant species in Lanzhou[J]. Chinese Journal of Plant Ecology, 2021, 45(2): 187-196.
[51] Dole?al J, Ku?erová A, Jandová V, Klimeš A,?íha P, et al. Anatomical adaptations in aquatic and wetland dicot plants: disentangling the environmental, morphological and evolutionary signals[J]. Environ Exp Bot, 2021, 187(2021): 104495.
[52] Allen ED, Spence DHN. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters[J]. New Phytol, 1981, 87(2):269-283.
[53] Li PP, Liao ZY, Zhou JZ, Yin LY, Jiang HS, et al. Bicarbonate-use by aquatic macrophytes allows a reduction in photorespiration at low CO2 concentrations[J]. Environ Exp Bot, 2021, 188(2021): 104520-104520.
[54] Newman JR, Raven JA. Photosynthetic carbon assimilation by Crassula helmsii[J]. Oecologia, 1995, 101(4): 494-499. angiosperm reproductive systems: what is the balance between sexual and asexual reproduction in aquatic angiosperms?[J]. Bio Science, 1996, 46(11): 813-826.
[2] 王胜男. 三种生活型水生植物气孔适应性特征及相关基因表达调控机制[D]. 武汉: 武汉大学, 2019: 1-2.
[3] Cook CDK. Aquatic Plant Book[M]. Netherlands: SPB Academic Publishing, 1990: 228.
[4] Arber A. On heterophylly in water plants[J]. Am Nat, 1919, 53(626): 272-278.
[5] Huang WM, Han SJ, Xing ZF, Li W. Responses of leaf anatomy and CO2 concentrating mechanisms of the aqua-tic plant Ottelia cordata to variable CO2[J]. Front Plant Sci, 2020, 11(2020): 1261.
[6] Huang LJ, Liu YC. Understanding diversity in leaf shape of Chinest sagittaria (Allsmataceae) by geometric tools[J]. Pak J Bot, 2014, 46(6): 1927-1934.
[7] Zotz G, Wilhelm K, Becker A. Heteroblasty: a review[J]. Bot Rev, 2011, 77(2): 109-151.
[8] Pigliucci M. Phenotypic Plasticity: Beyond Nature and Nurture[M]. Baltimore: JHU Press, 2001: 1-29.
[9] Marcus ASMGY. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibiousplant Nuphar lutea[J]. Photosynth Res, 2006, 90(3): 233-242.
[10] Maberly SC, Madsen TV. Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3-[J]. Funct Ecol, 1998, 12(1): 99-106.
[11] Maberly SC, Gontero B. Ecological imperatives for aquatic CO2-concentrating mechanisms[J]. J Exp Bot, 2017, 68(14): 3797-3814.
[12] Jackson MB. Ethylene and responses of plants to soil waterlogging and submergence[J]. Plant Physiol, 1985, 36(1): 145-174.
[13] Browse JA, Dromgoolea AFI, Browna JMA. Photosynthesis in the aquatic macrophyte Egeria densa. Ⅲ. Gas exchange studies[J]. Funct Plant Biol, 1979, 6(4): 499-512.
[14] Black MA, Maberly SC, Spence DHN. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes[J]. New Phytol, 1981, 89(4): 557-568.
[15] Madsen TV, Maberly SC. Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate[J]. Freshw Biol, 1991, 26(2): 175-187.
[16] Sand-Jensen K, Frost-Christensen H. Plant growth and photosynthesis in the transition zone between land and stream[J]. Aquat Bot, 1999, 63(1): 23-35.
[17] Maberly SC, Gontero B. Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments[M]//Adams WW III, Terashima I, eds. The Leaf: A Platform for Performing Photosynthesis. Chambridge: Springer Cham, 2018: 307-343.
[18] Iida S, Ikeda M, Amano M, Sakayama H, Kadono Y, et al. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus[J]. J Plant Res, 2016, 129(5): 853-862.
[19] Sculthorpe CD. Biology of Aquatic Vascular Plants[M]. London:Edward Arnold, 1967: 92-149.
[20] Maberly SC, Spence DHN. Photosynthesis and photorespiration in freshwater organisms: amphibious plants[J]. Aquat Bot, 1989, 34(1-3): 267-286.
[21] Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance[J]. Plant Physiol, 2005, 139(1): 497-508.
[22] Robe WE, Griffiths H. Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora[J]. New Phytol, 1998, 140(1): 9-23.
[23] Wang SN, Li PP, Liao ZY, Wang WW, Chen T,et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot, 2022, 196(2022): 104818.
[24] Iversen LL, Winkel A, Baastrup-Spohr L, Hinke AB, Alahuhta J, et al. Catchment properties and the photosynthetic trait composition of freshwater plant communities[J]. Science, 2019, 366(6467): 878-881.
[25] Zhang Y, Yin L, Jiang HS, Li W, Gontero B, et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosyn Res, 2014, 121(2):285-297.
[26] Huang WM, Shao H, Zhou SN, Zhou Q, Fu WL,et al. Different CO2 acclimation strategies in juvenile and mature leaves of Ottelia alismoides[J]. Photosyn Res, 2018, 138(2):219-232.
[27] Hussner A, Mettler-Altmann T, Weber APM, Sand-Jensen K. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users[J]. Freshw Biol, 2016, 61(10): 1720-1732.
[28] Casati PV, Lara MS, Andreo C. Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species[J]. Plant Physiol, 2000, 123(4):1611-1622.
[29] Wells CL, Pigliucci M. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants[J]. Perspect Plant Ecol Evol Syst, 2000, 3(1): 1-18.
[30] Horiguchi G, Nemoto K, Yokoyama T, Hirotsu N. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Hygrophila difformis[J]. AoB Plants, 2019, 11(2): plz009.
[31] Minorsky PV. The Hot and the Classic[J]. Plant Physiol, 2002, 128(4): 1167-1168.
[32] Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche pa-lustris L.[J]. Plant Cell, 2021, 33(10): 3272-3292.
[33] Kim J, Joo Y, Kyung J, Jeon M, Park JY, et al. A mole-cular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus[J]. PLoS Genet, 2018, 14(2): e1007208.
[34] Wellburn AR, Lichtenthaler H. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Adv Photo Res, 1984, Ⅱ: 9-12.
[35] James SA, Bell DT. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae)[J]. Aust J Bot, 2001, 49(2): 259-269.
[36] Maberly SC, Spence DHN. Photosynthetic inorganic carbon use by freshwater plants[J]. J Ecol, 1983(71): 705-724.
[37] Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light[J]. J Exp Bot, 2017, 68(14): 3985-3995.
[38] Montero F. Photosynthetic pigments[M]//Muriel G, William MI, Ricardo A, Henderson JCII, Daniele P, eds. Encyclopedia of Astrobiology. 2nd. Berlin:Springer,2015:1883-1884.
[39] Li X, He D, Guo Y. Morphological structure and physiological research of heterophylly in Potamogeton octandrus[J]. Plant Sys Evol, 2019, 305(3): 223-232.
[40] Klimenko EN. Structural and functional aspects of the Nuphar lutea (L.) Smith heterophylly: ultrastructure and photosynthesis[J]. Cytol Genet, 2012, 46(5): 272-279.
[41] Ueno O. Structural characterization of photosynthetic cells in an amphibious sedge, Eleocharis vivipara, in relation to C3 and C4 metabolism[J]. Planta, 1996, 199(3): 382-393.
[42] Li G, Hu S, Hou H, Kimura S. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants[J]. Plants, 2019, 8(10): 420-420.
[43] 董如磊, 喻方圆, 欧阳献. 遮荫对东京野茉莉幼苗叶片形态和解剖结构的影响[J]. 江西农业大学学报, 2010, 32(5): 974-981. Dong RL, Yu FY, Ouyang X. Effects of shading treatments on leaf morphology and anatomical structure of styrax tonkinensis seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(5): 974-981. |