[1] 许涛,夏冬健,万菁,姜书涵,宋江华. F-box蛋白参与植物逆境胁迫研究进展[J].生物技术通报, 2021, 37(12):205-211. Xu T, Xia DJ, Wan J, Jiang SH, Song JH. Research progress of f-box protein involved inplantstress[J]. Biotechnology Bulletin, 2021, 37(12):205-211.
[2] 岳玲琦,邢巧娟,张晓兰,梁雪,王乾,齐红岩.光敏色素互作因子在植物抵御逆境胁迫中的作用研究进展[J].园艺学报, 2021, 48(4):632-646. Yue LQ, Xing QJ, Zhang XL, Liang X, Wang Q, Qi HY. Research progress on the effect of phytochrome-interacting factors in plant resistance to abiotic stress[J]. Acta Horticulturae Sinica, 2021, 48(4):632-646.
[3] Jones-Rhoades MW, Bartel DP. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA[J]. Mol Cell, 2004, 14(6):787-799.
[4] Li WX, Oono Y, Zhu J, He XJ, Wu JM, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
[5] Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, et al. MiR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula[J]. Plant J, 2013, 74(6):920-934.
[6] Merchan F, Boualem A, Crespi M, Frugier F. Plantpolycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins[J]. Genome Biol, 2009, 10(12):136-136.
[7] 翟俊淼,栾雨时,崔娟娟. miR396基因家族的进化及功能分析[J].植物研究, 2013, 33(4):421-428. Zhai JM, Luan YS, Cui JJ. Evolution and function analysis of miR396 gene family[J]. Bull Bot Res, 2013, 33(4):421-428.
[8] Knaap EVD, Kim JH, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiol, 2000, 122(3):695-704.
[9] Wu WQ, Li J, Wang Q, Lv KW, Du K, et al. Growth-regulating factor 5(GRF5)-mediated gene regulatory network promotes leaf growth and expansion in poplar[J]. New Phytol, 2021, 230(2):612-628.
[10] Liu D, Song Y, Chen Z, Yu D. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis[J]. Physiol Plant, 2009, 136(2):223-236.
[11] Liang G, He H, Li Y,Wang F, Yu D. Molecular mechanism of miR396 mediating pistil development in Arabidopsis[J]. Plant Physiol, 2014, 164(1):249-258.
[12] Liu J, Hua W, Yang HL, Zhan GM, Li RJ, et al. The[STXFX]BnGRF2 gene (GRF2-like[STXFZ] gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis[J]. J Exp Bot, 2012, 63(10):3727-3740.
[13] Li S, Tian Y, Wu K, Ye YF, Yu JP, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720):595.
[14] Sun P, Zhang WH, Wang Y, He Q, Shu F, et al.[STXFX]OsGRF4[STXFZ] controls grain shape, panicle lengthand seed shattering in rice[J]. J Integr Plant Biol, 2016, 58(10):836-847.
[15] Kim JH. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J]. BMB Reports, 2019, 52(4):227-238.
[16] Chen X, Jiang LG, Zheng JS, Chen FY, Wang TS, et al. A missense mutation in large grain size 1 increases grain size and enhances cold tolerance in rice[J]. J Exp Bot, 2019, 70(15):3851-3866.
[17] Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Palatnik JF. MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots[J]. Plant Cell, 2015, 27(12):3354-3366.
[18] Horiguchi G, Kim GT, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant J, 2005, 43(1):68-78.
[19] Osnato M, Stile MR, Wang Y, Meynard D, Curiale S, et al. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley[J]. Plant Physiol, 2010, 154(4):1616-1632.
[20] Wu L, Zhang D, Xue M, Qian J, He Y, Wang S. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to a reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11):1053-1063.
[21] Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression:an overview of nuclear functions[J]. Int J Mol Sci, 2016, 17(10):1712-1712.
[22] Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions[J]. PLoS Genetics, 2012, 8(1):e1002419.
[23] Gonzalez N, Bodt SD, Sulpice R, Jikumaru Y, Chae E, et al. Increased leaf size:different means to an end[J]. Plant Physiol, 2010, 153(3):1261-1279.
[24] Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 2010, 137(1):103-112.
[25] Kuijt SJH, Greco R, Agalou A, Shao J, Heon CCJ, et al. Interaction between the GROWTH-REGULATING FACTOR and[STXFX]KNOTTED1-LIKE HOMEOBOX[STXFZ]families of transcription factors1[W][J]. Plant Physiol, 2014, 164(4):1952-1966.
[26] Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nat Biotechnol, 2020, 38(11):1-6.
[27] Che RH, Tong HN, Shi BH, Liu YQ, Fang SR, et al. Control of grain size and rice yield by[STXFX]GL2-[STXFZ]mediated brassinosteroid responses[J]. Nat Plants, 2016, 2(1):15195.
[28] Kim JH, Choi DS, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant J, 2003, 36(1):94-104.
[29] Kaur G, Author B. Molecular responses to drought stress in plants[J]. Biol Plantarum, 2017, 61(2):201-209.
[30] 杨凤玺. MiR396在烟草中的功能分析[D].北京:中国科学院研究生院, 2009:21-36.
[31] Chen L, Luan Y, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco[J]. Plant Cell Rep, 2015, 34(12):2013-2025.
[32] Inga H, Jennifer S, Corinna W, Tatjana G, Ingo V, et al. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase[J]. J Exp Bot, 2012, 63(3):1445-1459.
[33] Fracasso A, Vallino M, Staropoli A, Vinale F, Carra A. Increased water use efficiency in miR396-downregulated tomato plants[J]. Plant Sci, 2021, 303:110729.
[34] Liu W, Zhou Y, Li X, Wang X, Li H.Tissue-specific regulation of[STXFX]Gma-miR396[STXFZ] Family on coordinating development and low water availability responses[J]. Front Plant Sci, 2017, 8:1112.
[35] Li AL, Wen Z, Yang K, Wen XP, et al. Conserved miR396b-GRF regulation is involved in abiotic stress responses in pitaya (Hylocereus polyrhizus)[J]. Int J Mol Sci, 2019, 20(10):2501.
[36] Yang YQ, Guo Y. Elucidating the molecular mechanisms mediating plant saltstress responses[J]. New Phytol, 2018, 217(2):523-539.
[37] 潘凌云,马家冀,李建民,尹兵兵,付畅.植物盐胁迫应答转录因子的研究进展[J].生物工程学报, 2022, 38(1):50-65. Pan LY, Ma JJ, Li JM, Yin BB, Fu C.Research progress of salt stress-responsivetranscription factors in plants[J]. Chinese Journal of Biotechnology, 2022, 38(1):50-65.
[38] Liu H, Guo S, Xu Y, Li CH, Zhang ZY, et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets[STXFX]OsJMJ706 and OsCR4[STXFZ] [J]. Plant Physiol, 2014, 165(1):160-174.
[39] Guiltinan MJ, Marcotte WRJ, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic acid response element[J]. Science, 1990, 250(4978):267-271.
[40] Gao P, Bai X, Yang L, Lv D, Yong L, et al. Over-expression of[STXFX]osa-MIR396c[STXFZ] decreases salt and alkali stress tolerance[J]. Planta, 2010, 231(5):991-1001.
[41] Qin Z, Chen J, Jin L, Duns GJ, Ouyang P. Differential expression of miRNAs under salt stress in Spartina alterniflora leaf tissues[J]. J Nanosci Nanotechnol, 2015, 15(2):1554-1561.
[42] Zhou J, Liu M, Jiang J, Qiao G, Zhou R. Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress[J]. Mol Biol Rep, 2012, 39(9):8645-8654.
[43] Yuan S, Zhao J, Li Z, Hu Q, Luo H. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J]. Hortic Res, 2019, 6(1):13.
[44] Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4):1593-1608.
[45] Liu H, Tian X, Li Y, Wu CG, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5):836-843.
[46] Lantzouni O, Alkofer A, Falter-Braun P, Claus S. GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress[J]. Plant Cell, 2020, 32(4):1018-1034.
[47] Hivrale V, Zheng Y, Puli C, Jagadeeswaran G, Gowdu K, et al. Characterization of drought-and heat-responsive microRNAs in switchgrass[J]. Plant Sci, 2016, 242:214-223.
[48] 叶超楠,沈栎阳,方春,曹跃芬,於金生.热胁迫下水稻miR396家族及靶基因OsGRFs的表达研究[J].农业生物技术学报, 2018, 26(3):393-400. Ye CN, Shen LY, Fang C, Cao YF, Yu JS. Expression analysis of rice (Oryza sativa) miR396 family and target gene OsGRFs under heat stress[J]. Journal of Agricultural Biotechnology, 2018, 26(3):393-400.
[49] Zhang M, An P, Li H, Wang XL, Zhou JL. The miRNA-mediated post-transcriptional regulation of maize in response to high temperature[J]. Int J Mol Sci, 2019, 20(7):1754.
[50] 刘立立,杨进威,姜如云,姜玉梅,李永春,李磊.小麦[STXFX]miR396b[STXFZ]的特征及其在温度胁迫中的表达分析[J].山东农业科学, 2021, 53(7):1-8. Liu LL, Yang JW, Jiang RY, Jiang YM, Li YC, Li L. Characteristics and expression profiling of[STXFX]miR396b[STXFZ] in wheat[J]. Shandong Agricultural Sciences, 2021, 53(7):1-8.
[51] Zhao Y, Xie J, Wang S, Xu W, Zhang D. Synonymous mutation in[STXFX]Growth Regulating Factor 15[STXFZ] of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar[J]. J Exp Bot, 2021, 72(12):4502-4519.
[52] Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection[J]. Plant Physiol, 2003, 133(4):1420-1428.
[53] Rizzini L, Favory J, Cloix C, Faggionato D, Hara AO, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332(6025):103-106.
[54] Robson TM, Aphalo PJ. Species-specific effect of UV-B radiation on the temporal pattern of leaf growth[J]. Physiol Plantarum, 2012, 144(2):146-160.
[55] Wargent JJ, Moore JP, Ennos AR, Paul ND. Ultraviolet radiation as a limiting factor in leaf expansion and development[J]. Photochem Photobiol, 2009, 85(1):279-286.
[56] Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Paula C. Repression of GROWTH REGULATING FACTORS by the MicroRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves[J]. Plant Cell, 2013, 25(9):3570-3583.
[57] Fina J, Casadevall R, Abdelgawad H, Prinsen E,Casati P. UV-B inhibits leaf growth through changes in GROWTH-REGULATING FACTORS and gibberellin levels[J]. Plant Physiol, 2017, 174(2):1110-1126.
[58] Gomez MS, Ferreyra MLF, Sheridan ML, Sheridan ML, Casati P. Arabidopsis E2Fc is required for the DNA damage response under UV-B radiation epistatically over the microRNA396 and independently of E2Fe[J]. Plant Journal, 2019, 97(4):749-764.
[59] Casati P. Analysis of UV-B regulated miRNAs and their targets in maize leaves[J]. Plant Signal Behav, 2013, 8(10):e26758.
[60] Czesnick H, Lenhard M. Size control in plants-lessons from leaves and flowers[J]. Cold Spring Harb Perspect in Biol, 2015, 7(8):a019190.
[61] Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Naganand R, Moussa B, Heribert H. Plant immunity:from signaling to epigenetic control of defense[J]. Trends Plant Sci, 2018, 23(9):833-844.
[62] Elmore JM, Griffin BD, Walley JW. Advances in functional proteomics to study interactions[J]. Curr Opin Plant Biol, 2021, 63:102061.
[63] Hewezi T, Maier TR, Nettleton D, Baum TJ. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection[J]. Plant Physiol, 2012, 159(1):321-335.
[64] Soto-Suárez M, Baldrich P, Weigel D, Rubio-Somoza I, Segundo BS. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens[J]. Sci Rep, 2017, 7(1):44898.
[65] Noon JB, Hewezi T, Baum TJ. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections[J]. J Exp Bot, 2019, 70(5):1653-1668.
[66] 翟俊淼.致病疫霉诱导下番茄小RNA文库构建及sly-miR396的功能特性研究[D].大连:大连理工大学, 2014:29-58.
[67] Chandran V, Wang H, Gao F, Cao XL, Chen YP, et al. MiR396-OsGRFs module balances growth and rice blast disease-resistance[J]. Front Plant Sci, 2019, 9:1999.
[68] Rodriguez RE, Schommer C, Palatnik JF. Control of cell proliferation by microRNAs in plants[J]. Curr Opin Plant Biol, 2016, 34:68-76.
[69] Miao C,Wang D, He R, Liu S, Zhu J. Mutations in[STXFX]MIR396e and MIR396f[STXFZ]increase grain size and modulate shoot architecture in rice[J]. Plant Biotechnol J, 2019, 18(2):491-501.
[70] Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J]. Plant J, 2014, 79(3):413-426. |