Genetic diversity and genetic structure of a rare and endangered species Semiliquidambar cathayensis Hung T. Chang
Ye Xing-Zhuang1, Wen Guo-Wei1, Zhang Ming-Zhu1, Liu Yi-Peng1, Fan Hui-Hua2, Zhang Guo-Fang1, Chen Shi-Pin1, Liu Bao1
1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
2. Fujian Research Institute of Forestry, Fuzhou 350012, China
Genetic diversity and genetic structure of Semiliquidambar cathayensis Hung T. Chang were analyzed using 15 EST-SSR primers. Results revealed that its genetic diversity was high (He=0.816), and that genetic variation mainly existed within populations (76.63%), although the genetic differentiation coefficient among different regions was slightly high (Fst=0.176). The 17 populations could be divided into seven gene banks. We found that the genetic background was complex and the gene heterozygosity was high. However, the genetic structure of the populations were unstable, and four populations (40%) experienced bottleneck events. We showed that S. cathayensis maintained relatively rich genetic variation and had high evolutionary potential. Habitat fragmentation and its endangerment caused by breeding system and human disturbance might be the main causes for the formation of the current geographical distribution pattern and population genetic structure.
[1] Zhang MG, Slik JWF, Ma KP. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Sci Rep-UK, 2016, 6:22400.
[2] Sun WB, Ma YP, Blackmore S. How a new conservation action concept has accelerated plant conservation in China[J]. Trends Plant Sci, 2019, 24(1):4-6.
[3] Breslin PB, Wojciechowski MF, Albuquerque F. Projected climate change threatens significant range contraction of Cochemiea halei(Cactaceae), an island endemic, serpentine-adapted plant species at risk of extinction[J]. Ecol Evol, 2020, 10(23):13211-13224.
[4] Hoffmann AA, Miller AD, Weeks AR. Genetic mixing for population management:from genetic rescue to provenancing[J]. Evol Appl, 2020,14(3):634-652.
[5] Wu X, Ruhsam M, Wen Y, Thomas P, Worth JRP, et al. The last primary forests of the Tertiary relict Glyptostrobus pensilis contain the highest genetic diversity[J]. Forestry, 2020, 93(3):359-375.
[6] 叶兴状, 杨先吉, 王妙青, 刘宝, 范辉华, 等. 濒危珍稀植物半枫荷转录组中SSR位点分析[J]. 分子植物育种, 2020, 18(5):215-222. Ye XZ, Yang XJ, Wang MQ, Liu B, et al. Analysis of SSR locus marked transcriptome of rare and endangered plants of Semiliquidambar cathayensis[J]. Molecular Plant Breeding, 2020, 18(5):215-222.
[7] Zhang MZ, Jiang YT, Ye XZ, Chen SP, Fan HH, Liu B. The complete chloroplast genome of Semiliquidambar cathayensis(Hamamelidaceae)[J]. Mitochondrial DNA B, 2020, 5(1):695-696.
[8] 吴伟. 阿丁枫科的自然杂交、亲缘地理学与物种形成模式[D].广州:中山大学, 2009.
[9] Xiang X, Xiang K, Ortiz RDC, Jabbour F, Wang W. Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae[J]. J Biogeogr, 2019, 46(11):2622-2631.
[10] 孙静, 郑雪凌, 崔向珍, 孟琳. 半枫荷抗乙型肝炎病毒的药理活性研究[J]. 时珍国医国药, 2014, 25(10):2391-2393. Sun J, Zheng XL, Cui XZ, Meng L. A study of inhibition effects on hepatitis B virus of Semi-cathayensis in vitro[J]. Lishizhen Medicine and Materia Medica Research, 2014, 25(10):2391-2393.
[11] 田晓明, 颜立红, 蒋利媛, 向光锋, 李高飞, 吴嘉.基于UHPLC-QTOF/MS代谢组学技术比较分析半枫荷不同组织化学成分[J]. 植物生理学报, 2021,57(6):1311-1318. Tian XM, Yan LH, Jiang LY, Xiang GF, Li GF, Wu J. Chemical comparison of different tissues of Semiliquidambar cathayensis Chang by UHPLC-QTOF/MS-based metabonomics[J].Plant Physiology Journal, 2021, 57(6):1311-1318.
[12] 谢慧敏, 彭德镇, 陈衍如, 罗火林, 杨柏云, 熊冬金. 江西主要山脉春兰野生居群遗传结构与分化[J]. 植物科学学报, 2020, 38(1):123-133. Xie HM, Peng DZ, Chen YR, Luo HL, Yang BY, Xiong DJ. Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China[J]. Plant Science Journal, 2020, 38(1):123-133.
[13] Wu QC, Zang FQ, Ma Y, Zheng YQ, Zang DK. Analysis of genetic diversity and population structure in endangered Populus wulianensis based on 18 newly developed EST-SSR markers[J]. Glob Ecol Conserv, 2020, 24:e01329.
[14] Worth JRP, Marthick JR, Harrison PA, Sakaguchi S, Jordan GJ. The palaeoendemic conifer Pherosphaera hookeriana (Podocarpaceae) exhibits high genetic diversity despite Quaternary range contraction and post glacial bottlenecking[J]. Conserv Genet, 2021, 22(2):307-321.
[15] Liu KJ, Muse SV. PowerMarker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9):2128-2129.
[16] Krawczak M, Nikolaus S, von Eberstein H, Croucher PJP, El Mokhtari NE, Schreiber S. PopGen:Population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships[J]. Community Genet, 2006, 9(1):55-61.
[17] Goudet J. FSTAT (version 1.2):A computer program to calculate F-Statistics[J]. J Hered, 1995, 86(6):485-486.
[18] Hall BG. Building phylogenetic trees from molecular data with MEGA[J]. Mol Biol Evol, 2013, 30(5):1229-1235.
[19] Peakall R, Smouse PE. GenAlEx 6.5:genetic analysis in Excel. Population genetic software for teaching and research-an update[J]. Bioinformatics, 2012, 28(19):2537-2539.
[20] Earl DA, Vonholdt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the evanno method[J]. Conserv Genet Resour, 2012, 4(2):359-361.
[21] Jakobsson M, Rosenberg NA. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics, 2007, 23(14):1801-1806.
[22] Rosenberg NA. DISTRUCT:a program for the graphical display of population structure[J]. Mol Ecol Notes, 2004, 4(1):137-138.
[23] Piry S, Luikart G, Cornuet JM. BOTTLENECK:A compu-ter program for detecting recent reductions in the effective population size using allele frequency data[J]. J Hered, 1999, 90(4):502-503.
[24] 刘圆缓. 西南特有濒危植物大王杜鹃的保护遗传学研究[D]. 昆明:云南大学, 2019.
[25] 孟艺宏. 长柄双花木群体遗传多样性分析[D]. 长沙:中南林业科技大学, 2019:29-40.
[26] 张云燕. 中国古特有濒危植物银缕梅(金缕梅科)的保护遗传学研究[D]. 南京:南京大学, 2018:50-67.
[27] 马晓英, 韦伟, 申琳, 王珂, 于晶. 沿海岛屿与内陆藓类植物遗传多样性和分化的比较研究:以真藓(Bryum argenteum Hedw.)为例[J]. 植物科学学报, 2019, 37(3):295-302. Ma XY, Wei W, Shen L, Wang K, Yu J. Genetic diversity and differentiation between coastal and inland populations of mosses:a case study of Bryum argenteum Hedw.[J]. Plant Science Journal, 2019, 37(3):295-302.
[28] 王满莲, 文香英, 韦霄, 蒋运生, 唐辉. 温度对3种金缕梅科植物种子萌发特性的影响[J]. 种子, 2016, 35(10):79-83. Wang ML, Wen XY, Wei X, Jiang YS, Tang H. Effects of temperature on seed germination of three species of Hamamelidaceae[J]. Seed, 2016, 35(10):79-83.
[29] 叶俊伟, 张阳, 王晓娟. 中国亚热带地区阔叶林植物的谱系地理历史[J]. 生态学报, 2017, 37(17):5894-5904. Ye JW, Zhang Y, Wang XJ. Phylogeographic history of broad-leaved forest plants in subtropical China[J]. Acta Ecologica Sinica, 2017, 37(17):5894-5904.
[30] Gong W, Liu WZ, Gu L, Kaneko S, Koch MA, Zhang DX. From glacial refugia to wide distribution range:demographic expansion of Loropetalum chinense (Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest[J]. Org Divers Evol, 2016, 16(1):23-38.
[31] Ye XZ, Zhao GH, Zhang MZ, Cui XY, Fan HH, Liu B. Distribution pattern of endangered plant Semiliquidambar cathayensis(Hamamelidaceae) in response to climate change after the last interglacial period[J]. Forests, 2020, 11(4):434.
[32] Deltredici P, Hsieh L, Guang Y. The Ginkgos of Tian Mu Shan[J]. Conserv Biol, 1992, 6(2):202-209.
[33] 罗仕祥. 濒危植物半枫荷生境调查及优树选择技术[J]. 林业勘察设计, 2020, 40(1):46-50.
[34] 徐燕, 吕丹, 黄佩萍, 陈忠, 胡华明,等. 宜春区域半枫荷生境及其生长情况分析[J]. 现代园艺, 2020, 43(19):63-66.
[35] Bezemer N, Krauss SL, Roberts DG, Hopper SD. Conservation of old individual trees and small populations is integral to maintain species' genetic diversity of a historically fragmented woody perennial[J]. Mol Ecol, 2019, 28(14):3339-3357.