[1] 朱强, 李永华, 李瑞, 贾巧霞. 四川扁桃种仁的含油率及其脂肪酸组成分析[J]. 西部林业科学, 2013, 42(4):100-103. Zhu Q, Li YH, Li R, Jia QX. Analysis on oil content and fatty acid composition of Amygdalus tangutica seed kernel[J]. Journal of West China Forestry Science, 2013, 42(4):100-103.
[2] 王伟, 许新桥. 木本油料西康扁桃资源评价及产业化发展策略[J]. 中国油脂, 2016, 41(11):1-5. Wang W, Xu XQ. Resource evaluation and industrialization development strategy of woody oil plant Amygdalus[J]. China Oils and Fats, 2016, 41(11):1-5.
[3] 李倩, 权博文, 常虹, 周红兵, 白万富, 石松利. 扁桃属植物的化学成分及药理作用研究进展[J]. 中国药房, 2020, 31(21):2683-2688. Li Q, Quan BW, Chang H, Zhou HB, Bai WF, Shi SL. Research progress on chemical constituents and pharmacological effects of Amygdalus[J]. China Pharmacy, 2020, 31(21):2683-2688.
[4] 张善云. 用四川扁桃作普通扁桃的砧木[J]. 中国果树, 1983(3):53.
[5] 张善云, 黄光志. 四川扁桃嫁接普通扁桃的试验[J]. 四川林业科技, 1983(3):53-54.
[6] 梅立新, 刘文倩, 魏钰, 蒋宝. 中国扁桃资源与利用价值分析[J]. 西北林学院学报, 2014, 29(1):69-72. Mei LX, Liu WQ, Wei Y, Jiang B. Evaluation of the resources and development potential of Amygdalus spp. in China[J]. Journal of Northwest Forestry University, 2014, 29(1):69-72.
[7] 苏贵兴, 姚玉卿, 张善云, 黄光志. 四川扁桃的调查研究[J]. 中国果树, 1982(4):21-23.
[8] 马松梅, 聂迎彬, 段霞, 余存生, 王荣学. 蒙古扁桃植物的潜在地理分布及居群保护优先性[J]. 生态学报, 2015, 35(9):2960-2966. Ma SM, Nie YB, Du X, Yu CS, Wang RX. The potential distribution and population protection priority of Amygdalus mongolica[J]. Acta Ecologica Sinica, 2015, 35(9):2960-2966.
[9] 褚建民, 李毅夫, 张雷, 李斌, 高明远, 等. 濒危物种长柄扁桃的潜在分布与保护策略[J].生物多样性, 2017, 25(8):799-806. Chu JM, Li YF, Zhang L, Li B, Gao MY, et al. Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata[J]. Biodiver-sity Science, 2017, 25(8):799-806.
[10] 红雨, 邹林林, 朱清芳. 珍稀濒危植物蒙古扁桃群落结构特征[J]. 生态学杂志, 2010, 29(10):1907-1911. Hong Y, Zhou LL, Zhu QF. Community structure characteristics of endangered plant Prunus mongolica[J]. Chinese Journal of Ecology, 2010, 29(10):1907-1911.
[11] 段义忠, 王佳豪, 王驰, 王海涛, 杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析[J]. 生态学杂志, 2020, 39(7):2193-2204. Duan YZ, Wang JH, Wang C, Wang HT, Du ZY. Analysis on the potential suitable areas of four species of the subgen. Amygdalus in arid Northwest China under future climate change[J]. Chinese Journal of Ecology, 2020, 39(7):2193-2204.
[12] 郭改改, 封斌, 麻保林, 井赵斌, 张应龙, 郭春会. 不同区域长柄扁桃抗旱性的研究[J]. 植物科学学报, 2013, 31(4):360-369. Guo GG, Feng B, Ma BL, Jing ZB, Zhang YL, Guo CH. Studies on drought resistance of different regional Amygdalus pedunculata Pall.[J]. Plant Science Journal, 2013, 31(4):360-369.
[13] Wang JG, Zheng R, Bai SL, Guo XM, Liu M, Yan W. Mongolian almond (Prunus mongolica Maxim):The morpho-physiological, biochemical and transcriptomic response to drought stress[J]. PLoS One, 2015, 10(4):e0124442.
[14] 黄来明, 邵明安, 裴艳武, 张应龙. 沙地濒危植物长柄扁桃生物学特性与抗逆性及应用综述[J]. 土壤, 2019, 51(2):217-223. Huang LM, Shao MA, Pei YW, Zhang YL. Review on biological characteristics and abiotic stress tolerance mechanisms and applications of Amygdalus pedunculata[J]. Soils, 2019, 51(2):217-223.
[15] Chang H, Liu Q, Bai WF, Bai YC, Jia XY, et al. Protective effects of Amygdalus mongolica on rats with renal fibrosis based on serum metabolomics[J]. J Ethnopharmacol, 2020, 257:112858.
[16] 王进, 颜霞, 李军元, 谢全刚, 张勇, 等. 蒙古扁桃(Amygdalus mongolica)种子萌发及幼苗生长对胁迫的响应[J]. 中国沙漠, 2018, 38(1):140-148. Wang J, Yan X, Li JY, Xie QG,Zhang Y, et al. Response of the seed germination and seedling growth of Amygdalus mongolica to stresses[J]. Journal of Desert Research, 2018, 38(1):140-148.
[17] 张瑞琦, 王进鑫, 王秀青, 狄龙. 4种草本植物浸提液对长柄扁桃种子萌发及幼苗生长的影响[J]. 西北林学院学报, 2018, 33(5):94-99. Zhang RQ, Wang JX, Wang XQ, Di L. Effects of the water extract from four herbs on seed germination and seedling growth of Amygdalus pedunculata[J]. Journal of Northwest Forestry University, 2018, 33(5):94-99.
[18] 王子婷, 莫保儒. 甘肃省白龙江流域西康扁桃灌丛群落分布特征[J]. 甘肃林业科技, 2015, 40(4):5-9. Wang ZT, Mo BR. Study on distribution characteristics of Amygdalus tungutica shrub community at Bailongjiang Watersh in Gansu[J]. Journal of Gansu Forestry Science and Technology, 2015, 40(4):5-9.
[19] 宋鹏, 张庭端, 刘芙蓉, 王伟, 罗建勋, 贾晨. 川西地区西康扁桃优树选择技术与综合评价[J]. 四川林业科技, 2017, 38(2):79-84. Song P, Zhang TR, Liu FR, Wang W, Luo JX, Jia C. Superior variety selection and overall evaluations of Amygdalus tangutica in Western Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(2):79-84.
[20] 曾继娟, 朱强. 水分胁迫对3种扁桃的生长与耗水特征的影响[J]. 西北林学院学报, 2018, 33(4):145-152. Zeng JJ, Zhu Q. Effects of water stress on the growth and water consumption characteristics of three Amygdalus species[J]. Journal of Northwest Forestry University, 2018, 33(4):145-152.
[21] 刘国华, 马克明, 傅伯杰, 关文彬, 康永祥, 等. 岷江干旱河谷主要灌丛类型地上生物量研究[J]. 生态学报, 2003(9):1757-1764. Liu GH, Ma KP, Fu BJ, Guan WB, Kang YX, et al. Aboveground biomass of main shrubs in dry valley of Minjiang River[J]. Acta Ecologica Sinica, 2003(9):1757-1764.
[22] Chu JM, Yang HX, Lu Q, Zhang XY. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration[J]. AoB Plants, 2015, 7:plv063.
[23] 何其华, 何永华, 包维楷. 岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态[J]. 应用与环境生物学报, 2004, 10(1):68-74. He QH, He YH, Bao WK. Dynamics of soil water contents on south-facing slope of dry valley area in the upper reaches of the Minjiang River[J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1):68-74.
[24] 庞学勇, 包维楷, 吴宁. 岷江上游干旱河谷气候特征及成因[J]. 长江流域资源与环境, 2008, 17(S1):46-53. Pang XY, Bao WK, Wu N. Reasons of dry valley climate characteristic and its formation reason in upstream of Minjiang River[J]. Resources and Environment in the Yangtze Basin, 2008, 17(S1):46-53.
[25] 冶民生, 关文彬, 谭辉, 马克明, 刘国华, 汪西林. 岷江干旱河谷灌丛α多样性分析[J]. 生态学报, 2004, 24(6):1123-1130. Ye MS, Guan WB, Tan H, Ma KP, Liu GH, Wang XL. The α diversity of shrubs community in the arid valley of the Minjiang River[J]. Acta Ecologica Sinica, 2004, 24(6):1123-1130.
[26] 包维楷, 陈庆恒, 陈克明. 岷江上游干旱河谷植被恢复环境优化调控技术研究[J]. 应用生态学报, 1999(5):542-544. Bao WK, Chen QH, Chen KM. Environment control techniques for vegetation restoration in dry valley of upper reaches of Minjiang River[J]. Chinese Journal of Applied Ecology, 1999(5):542-544.
[27] 晏兆莉, 陈克明, 陈建中, 王春明. 岷江干旱河谷的生态特征与植被恢复研究[J]. 世界科技研究与发展, 2000(S1):36-38. Yan ZL, Chen KM, Chen JZ, Wang CM. Studies on ecological characteristics and reforestation in dry valley area of Minjiang River[J]. World Sci-Tech R & D, 2000(S1):36-38.
[28] 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6):533-548. Fang JY, Wang XP, Shen ZH, Tang ZR, He JS, et al. Methods and protocols for plant community inventory[J]. Biodiversity Science, 2009, 17(6):533-548.
[29] 范建容, 杨超, 包维楷, 刘佳丽, 李炫. 西南地区干旱河谷分布范围及分区统计分析[J]. 山地学报, 2020, 38(2):303-313. Fan JR, Yang C, Bao WK, Liu JL, Li X. Distribution scope and district statistical analysis of dry valleys in Southwest China[J]. Mountain Research, 2020, 38(2):303-313.
[30] Martin D, Vazquez-Pique J, Carevic FS, Fernandez M, Alejano R. Trade-off between stem growth and acorn production in holm oak[J]. Trees, 2015, 29(3):825-834.
[31] 李清河, 辛智鸣, 高婷婷, 王赛宵, 徐军, 孙非. 荒漠植物白刺属4个物种的生殖分配比较[J]. 生态学报, 2012, 32(16):5054-5061. Li QH, Xin ZM, Gao TT, Wang SX, Xu J, Sun F. Reproductive allocation in four desert species of the genus Nitraria L.[J]. Acta Ecologica Sinica, 2012, 32(16):5054-5061.
[32] Tamaki I, Nomura K, Nomura R, Tate C, Fukaya S, et al. Survival, growth and reproduction of sprouted individuals of star magnolia two years after clearcutting[J]. J Forest Res, 2020, 26(1):26-31.
[33] 操国兴, 钟章成, 谢德体, 刘芸. 不同群落中川鄂连蕊茶的生殖分配与个体大小之间关系的探讨[J]. 植物生态学报, 2005, 29(3):261-266. Cao GX, Zhong ZC, Xie DT, Liu Y. The relationship between reproductive allocation, fruit set and individual size of Camellia rosthorniana in different communities[J]. Chinese Journal of Plant Ecology, 2005, 29(3):261-266.
[34] Norghauer JM, Newbery DM. Tree size and fecundity influence ballistic seed dispersal of two dominant mast-fruiting species in a tropical rain forest[J]. Forest Ecol Manag, 2015, 338:100-113.
[35] Bogdziewicz M, Szymkowiak J, Calama R, Crone EE, Espelta JM, et al. Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals[J]. Ann Bot, 2020, 126(5):971-979.
[36] Minor DM, Kobe RK. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest[J]. Ecol Evol, 2019, 9(3):1458-1472.
[37] Mund M, Herbst M, Knohl A, Matthaus B, Schumacher J, et al. It is not just a ‘trade-off’ indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest[J]. New Phytol, 2020, 226(1):111-125.
[38] 殷东生, 沈海龙. 林木大年结实特征及其影响因素研究进展[J]. 生态学杂志, 2016, 35(2):542-550. Yin DS, Shen HL. Research review on the characteristics of mast seeding in forest trees and its influencing factors[J]. Acta Ecologica Sinica, 2016, 35(2):542-550.
[39] Nussbaumer A, Waldner P, Apuhtin V, Aytar F, Benham S, et al. Impact of weather cues and resource dynamics on mast occurrence in the main forest tree species in Europe[J]. Forest Ecol Manag, 2018, 429:336-350.
[40] 杨锡福, 张洪茂, 张知彬. 植物大年结实及其与动物贮食行为之间的关系[J]. 生物多样性, 2020, 28(7):821-832. Yang XF, Zhang HM, Zhang ZB. Mast seeding and its relationship to animal hoarding behaviour[J]. Biodiversity Science, 2020, 28(7):821-832.
[41] Bogdziewicz M, Espelta JM, Munoz A, Aparicio JM, Bonal R. Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density[J]. Oecologia, 2018, 186(4):983-993.
[42] 罗永红, 闫兴富, 周立彪, 苗迎权, 张金峰. 种子特征和结实量对啮齿动物取食和扩散种子行为的影响[J]. 应用生态学报, 2018, 29(12):4181-4190. Luo YH, Yan XF, Zhou LB, Miao YQ, Zhang JF. Effects of seed traits and seed production on the seed predation and dispersal behavior of rodent[J]. Chinese Journal of Applied Ecology, 2018, 29(12):4181-4190.
[43] 黄财智, 张文辉, 邢忠利, 余碧云, 叶权平, 薛文艳. 间伐强度对黄桥林区辽东栎生殖构件的影响[J]. 应用生态学报, 2016, 27(12):3838-3844. Huang CZ, Zhang WH, Xing ZL, Yu BY, Ye QP, Xue WY. Effects of thinning intensities on reproductive modules of Quercus liaotungensis in Huanglong and Qiaoshan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2016, 27(12):3838-3844.
[44] Grime JP. Plant strategies and vegetation processes[J]. Biol Plant, 1979, 23(4):254-254. |