Based on genomic data of Capsicum chinense Jacq., whole genome identification of the HSP70 gene family was carried out using bioinformatics. In total, 20 HSP70 genes were identified, with coding protein length ranging from 516 to 854 aa and molecular weight ranging from 56.21 to 94.26 kD. Phylogenetic analysis showed that the HSP70 gene family was divided into three subfamilies:A, B, and C. Comparative transcriptome analysis showed that 16 HSP70 genes were responsive to heat stress.
[1] Han S, Liu Y, Chang A. Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1[J]. J Biol Chem, 2007, 282(36):26140-26149.
[2] Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins[J]. Annu Rev Biochem, 2003, 62:349-384.
[3] Wang A, Yu XH, Yun M, Ying L, Liu GQ, et al. Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice[J]. Plant Breeding, 2015, 134(4):384-393.
[4] Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones[J]. Annu Rev Cell Biol, 1993, 9(1):601-634.
[5] Waters RER. Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes[J]. Cell Stress Chaperon, 2007, 12(2):172-185.
[6] Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH. Genome-wide analysis of the HSP70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress[J]. Plant Sci, 2016, 252:246-256.
[7] Huang XY, Tao P, Li BY, Wang WH, Yue ZC, et al. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis)[J]. Genet Mol Res, 2015, 14(1):2189-204.
[8] Latijnhouwers M, Mller XSG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J]. Planta, 2010, 232(3):567-578.
[9] Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101[J]. Plant J, 2020, 103(6):2069-2083.
[10] Cazalé AC, Clément M, Serge C, Marie AR, Nathalie P, et al. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2009, 60(9):2653-2664.
[11] Chaston J, Smits C, Aragão D, Andrew W, Ahsan B, et al. Structural and functional insights into the evolution and stress adaptation of typeⅡ chaperonins.[J]. Structure, 2016, 24(3):364-374.
[12] Seo K, Choi E, Lee D, Jeong DE, Jang SK, Lee SJ. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans[J]. Aging Cell, 2013, 12(6):1073-1081.
[13] 贾志银. 辣椒耐热生理生化特性及谷胱甘肽处理效应研究[D]. 咸阳:西北农林科技大学, 2010.
[14] Pagamas P, Nawata E. Sensitive stages of fruit and seed development of chili pepper(Capsicum annuum L. var. Shishito) exposed to high-temperature stress[J]. Scihortic-Amsterdam, 2008, 117(1):21-25.
[15] 胡能兵, 隋益虎, 舒英杰, 何克勤. 高温胁迫对不同热敏型辣椒同工酶及DNA甲基化的影响[J]. 西北植物学报, 2016, 36(1):137-144. Hu NB, Sui YH, Shu YJ, He KQ. Effect of heat stress on isoenzyme and DNA methylation of different heat-sensitive peppers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1):137-144.
[16] Li QB, Haskell DW, Guy CL. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato[J]. Plant Mol Biol, 1999, 39(1):21-34.
[17] Liu J, Pang X, Cheng Y, Yin YH, Zhang Q, et al. The HSP70 gene family in Solanum tuberosum:genome-wide identification, phylogeny, and expression patterns[J]. Sci Rep-UK, 2018, 8(8):1025-1039.
[18] Kim S, Park J, Yeom SI, Kim YM, Seo E, et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication[J]. Genome Biol, 2017, 18:210.
[19] 高崇伦, 黄家权, 成善汉, 汪志伟, 尹黎燕. 中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析[J]. 植物科学学报, 2020, 38(2):249-259. Gao CL, Huang JQ, Cheng SH, Wang ZW, Yin LY. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2):249-259.
[20] Sung DY, Kaplan F, Guy CL. Plant Hsp70 molecular chaperones:protein structure, gene family, expression and function[J]. Physiol Plantarum, 2010, 113(4):443-451.
[21] Sung DY, Guy CL. Comprehensive expression profile analysis of the ArabidopsisHSP70 gene family[J]. Plant Physiol, 2001, 126(2):789-800.
[22] Guy CL, Li QB. The organization and evolution of the spinach stress 70 molecular chaperone gene family[J]. Plant Cell, 1998, 10(4):539-556.
[23] Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, et al. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean(Glycine max L.)[J]. Front Plant Sci, 2015, 6:773.
[24] Kose S, Furuta M, Imamoto N. Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage[J]. Cell, 2012, 149(3):578-589.
[25] Semon M, Wolfe KH. Consequences of genome duplication[J]. Curr Opin Genet Dev, 2007, 17(6):505-512.
[26] Sarkar NK, Kundnani P, Grover A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa)[J]. Cell Stress Chaperon, 2013, 18(4):427-437.
[27] Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regul, 2017, 83(2):313-323.
[28] Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences[J]. Plant Physiol, 2003, 132(2):979-987.