[1] Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770.
[2] Murre C, Mccaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer bin-ding, daughterless, MyoD, and myc proteins[J]. Cell, 1989, 56(5):777-783.
[3] Atchley WR, Terhalle W, Dress A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain[J]. J Mol Evol, 1999, 48(5):501-516.
[4] Sailsbery JK, Dean RA. Accurate discrimination of bHLH domains in plants, animals, and fungi using biologically meaningful sites[J]. BMC Evol Biol, 2012, 12(1):154.
[5] Li XX, Duan XP, Jiang HX, Sun YJ, Tang YP, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiol, 2006, 141(4):1167-1184.
[6] Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana[J]. Plant Cell, 2003, 15(11):2497-2502.
[7] Song XM, Huang ZN, Duan WK, Ren J, Liu TK, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa L. ssp. Peki-nensis (Lour.) Olsson)[J]. Mol Genet Genomics, 2014, 289(1):77-91.
[8] Niu X, Guan YX, Chen SK, Li HF. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon[J]. BMC Genomics, 2017, 18(1):619.
[9] Mao K, Dong QL, Li C, Liu CH, Ma FW. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress[J]. Front Plant Sci, 2017, 8:480.
[10] Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, et al. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth[J]. Plant Physiol, 2008, 147(4):1924-1935.
[11] Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA, et al. Gibberellins control fruit patterning in Arabidopsis thaliana[J]. Genes Dev, 2010, 24(19):2127-2132.
[12] Heisler MG, Atkinson A, Bylstra YH, Walsh R, Smyth DR. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development, 2001, 128(7):1089-1098.
[13] Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant J, 2010, 33(2):413-423.
[14] 何洁, 顾秀容, 魏春华, 杨小振, 李好, 等. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析[J]. 园艺学报, 2016, 43(2):281-294. He J, Gu XR, Wei CH, Yang XZ, Li H, et al. Identification and expression analysis under abiotic stresses of the bHLH transcription factor gene family in watermelon[J]. Acta Horticulturae Sinica, 2016, 43(2):281-294.
[15] Cui X, Wang YX, Liu ZW, Wang WL, Li H, et al. Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis[J]. Funct Integr Genomics, 2018, 18(5):489-503.
[16] Zhai Y, Zhang L, Xia C, Fu S, Zhao G, et al. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants[J]. Biochem Biophys Res Commun, 2016, 473(4):1321-1327.
[17] Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Tiss Organ Cult, 2016, 125(2):387-398.
[18] Peng ZH, Lu Y, Li LB, Zhao Q, Feng Q, et al. The draft genome of the fast growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461.
[19] Wu M, Liu HL, Han GM, Cai RH, Pan F, et al. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants[J]. Sci Rep, 2017, 7(1):11721.
[20] Li L, Mu SH, Cheng ZC, Cheng YW, Zhang Y, et al. Characterization and expression analysis of the WRKY gene family in moso bamboo[J]. Sci Rep, 2017, 7(1):6675.
[21] Wu HL, Lü H, Li L, Liu J, Mu SH, et al. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in moso bamboo (Phyllostachys edulis)[J]. PLoS One, 2015, 10(5):e0126657.
[22] Yang KB, Li Y, Wang SN, Xu XR, Sun HY, et al. Genome-wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis)[J]. PeerJ, 2019, 6:e6242.
[23] Wu M, Li Y, Chen D, Liu H, Zhu DY, et al. Genome-wide identification and expression analysis of the IQD gene fa-mily in moso bamboo (Phyllostachys edulis)[J]. Sci Rep, 2016, 6:24520.
[24] Pan F, Wang Y, Liu HL, Wu M, Chu WY, et al. Genome-wide identification and expression analysis of SBP-like transcription factor genes in moso bamboo (Phyllostachys edulis)[J]. BMC Genomics, 2017, 18(1):486.
[25] Zhang YT, Tang DQ, Lin XC, Ding MQ, Tong ZK. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering[J]. BMC Plant Biol, 2018, 18(1):176.
[26] 何龙燕, 刘武阳, 娄永峰, 肖复明. 毛竹GRF转录因子家族的全基因组鉴定与分析[J]. 植物科学学报, 2018, 36(5):713-720. He LY, Liu WY, Lou YF, Xiao FM. Genome wide identication and analysis of the GRF transcription factor family in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(5):713-720.
[27] 郭安源, 朱其慧, 陈新, 罗静初. GSDS:基因结构显示系统[J]. 遗传, 2007, 29(8):1023-1026. Guo AY, Zhu QH, Chen X, Luo JC. GSDS:a gene structure display server[J]. Hereditas, 2007, 29(8):1023-1026.
[28] Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y. TCP transcription factors in moso bamboo (Phyllostachys edulis):Genome-wide identification and expression analysis[J]. Front Plant Sci, 2018, 9:1263.
[29] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.
[30] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Res, 2012, 40:597-603.
[31] Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Res, 2009, 37:202-208.
[32] Fan CJ, Ma JM, Guo QR, Li XT, Wang H, et al. Selection of reference genes for real-time quantitative PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2):e56573.
[33] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method[J]. Methods, 2001, 25(4):402-408.
[34] 赵广枝, 孙化雨, 赵韩生, 高志民. 毛竹基因组测序及数据应用研究现状[J]. 世界竹藤通讯, 2015, 13(3):8-13. Zhao GZ, Sun HY, Zhao HS, Gao ZM. Research status of genomic sequencing and data application of Phyllostachys edulis[J]. World Bamboo and Rattan, 2015, 13(3):8-13.
[35] Zhao HS, Gao ZM, Wang L, Wang JL, Wang SB, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018, 7(10):1-12.
[36] Chen XR, Xiong R, Liu HL, Wu M, Chen F, et al. Basic helix-loop-helix gene family:Genome wide identification, phylogeny, and expression in moso bamboo[J]. Plant Physiol Bioch, 2018, 132(11):104-119.
[37] Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana[J]. Mol Gen Genet, 1993, 238(1-2):17-25.
[38] 王昕嘉, 李昆志. 植物bHLH转录因子参与非生物胁迫信号通路研究进展[J]. 生命科学, 2015, 27(2):209-216. Wang XJ, Li KZ. Progress of plant bHLH transcription factors involved in abiotic stress signaling pathways[J]. Chinese Bulletin of Life Sciences, 2015, 27(2):209-216. |