[1] 李东霞, 石桃雄, 袁盼, 冯燕妮, 石磊. 甘蓝型油菜根系突变体lrn1、prl1和野生型根系显微结构的差异[J]. 植物科学学报, 2014, 32(4):406-412. Li DX, Shi TX, Yuan P, Feng YN, Shi L. Differences in root microscopic structure of root mutantslrn1, prl1 and wild type in oilseed rape (Brassica napus L.)[J]. Plant Science Journal, 2014, 32(4):406-412.
[2] 金美芳, 朱晓清. NaCl胁迫对油菜种子萌发和幼苗生长的影响[J]. 种子, 2009, 28(9):76-79. Jin MF, Zhu XQ. Effects of NaCl stress on seed germination and seedling growth of Brassica rapa[J]. Seed, 2009, 28(9):76-79.
[3] 刘国红, 姜超强, 刘兆普, 梁明祥, 殷祥贞, 郑青松. 盐胁迫对油菜幼苗生长和光合特征的影响[J]. 生态与农村环境学报, 2012, 28(2):157-164. Liu GH, Jiang CQ, Liu ZP, Liang MX, Yin XZ, Zheng QS. Effects of salt Stress on growth and photosynthetic traits of canola seedlings[J]. Journal of Ecology and Rural Environment, 2012, 28(2):157-164.
[4] 朱宗河, 郑文寅, 张学昆. 甘蓝型油菜耐旱相关性状的主成分分析及综合评价[J]. 中国农业科学, 2011, 44(9):1775-1787. Zhu ZH, Zheng WY, Zhang XK. Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed(Brassica napus L.)[J]. Scientia Agricultura Sinica, 2011, 44(9):1775-1787.
[5] 范志强. 低温胁迫下外源水杨酸对油菜叶片生理活性的影响[J]. 安徽农学通报, 2009, 15(24):17. Fan ZQ. Effects of salicylic acid on physiological activity of Brassica napus leaves under low-temperature stress[J]. Anhui Agricultural Science Bulletin, 2009, 15(24):17.
[6] 徐进, 魏嵬, 韩璐, 官子楸, 郑宏春, 柴团耀. 重金属对油菜种子萌发和胚根生长的影响[J]. 西北植物学报, 2007, 27(11):2263-2268. Xu J, Wei W, Han L, Guan ZQ, Zheng HC, Chai TY. Effects of heavy metal ions on seeds germination and radicle growth of Brassica napus[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11):2263-2268.
[7] Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science, 2014, 345(6199):950-953.
[8] 张恒, 郑宝江, 宋保华, 王思宁, 戴绍军. 植物盐胁迫应答蛋白质组学分析[J]. 生态学报, 2011, 31(22):6936-6946. Zhang H, Zheng BJ, Song BH, Wang SN, Dai SJ. Salt-responsive proteomics in plants[J]. Acta Ecologica Sinica, 2011, 31(22):6936-6946.
[9] Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress[J]. Proteomics, 2011, 11(10):1965-1975.
[10] Y?ld?z M, Akçal? N, Terzi H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid[J]. J Plant Physiol, 2015, 179:90-99.
[11] Ismaili A, Salavati A, Mohammadi PP. A comparative proteomic analysis of responses to high temperature stress in hypocotyl of canola (Brassica napus L.)[J]. Protein Peptide Lett, 2015, 22(3):285-299.
[12] Mohammadi PP, Moieni A, Komatsu S. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress[J]. Amino Acids, 2012, 43(5):2137-2152.
[13] Liang Y, Strelkov SE, Kav NNV. Oxalic acid-mediated stress responses in Brassica napus L.[J]. Proteomics, 2009, 9(11):3156-3173.
[14] Yao Y, Sun H, Xu FS, Zhang XJ, Liu SY. Comparative proteome analysis of metabolic changes by low phospho-rus stress in two Brassica napus genotypes[J]. Planta, 2011, 233(3):523-537.
[15] Chen S, Ding GD, Wang ZH, Cai HM, Xu FS. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress[J]. J Proteomics, 2015, 117:106-119.
[16] D'Hooghe P, Escamez S, Trouverie J, Avice JC. Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms[J]. BMC Plant Biol, 2013, 13(1):23.
[17] D'Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice JC, Trouverie J. Evidence for proteomic and metabolic adaptations associated to alterations of seed yield and quality in sulphur-limited Brassica napus L.[J]. Mol Cell Proteomics, 2014, 13:1165-1183.
[18] Wang ZF, Wang ZH, Shi L, Wang LJ, Xu FS. Proteomic alterations of Brassica napus root in response to boron deficienc[J]. Plant Mol Biol, 2010, 74(3):265-278.
[19] Yang ZB. Small GTPases:versatile signaling switches in plants[J]. Plant Cell, 2002, 14(Suppl):S375-S388.
[20] Sang Y, Zheng SQ, Li WQ, Huang BR, Wang XM. Regulation of plant water loss by manipulating the expression of phospholipase Dα[J]. Plant J, 2001, 28(2):135-144.
[21] Roberts MR, Salinas J, Collinge DB. 14-3-3 proteins and the response to abiotic and biotic stress[J]. Plant Mol Biol, 2002, 50(6):1031-1039.
[22] Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB. Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain[J]. J Cereal Sci, 2009, 49(1):12-23.
[23] Yang F, Jensen JD, Svensson B, Jørgensen HJ, Collinge DB, Finnie C. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett[J]. Proteomics, 2010, 10(21):3748-3755.
[24] Liu K, Li L, Luan S. An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels[J]. Plant J, 2005, 42(3):433-443.
[25] Kato M, Nagasaki-Takeuchi N, Ide Y, Tomioka R, Maeshima M. PCaPs, possible regulators of PtdInsP signals on plasma membrane[J]. Plant Signal Behav, 2010, 5(7):848-850.
[26] Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function:how and why[J]. Annu Rev Biophys, 2008, 37:175.
[27] Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. Sugar input, metabolism, and signaling mediated by invertase:roles in development, yield potential, and response to drought and heat[J]. Mol Plant, 2010, 3(6):942-955.
[28] 李超, 林茂, 肖华贵, 杨斌, 饶勇. 硼对油菜生长发育的影响[J]. 中国种业, 2008(S1):14-16. Li C, Lin M, Xiao HG, Yang B, Rao Y. Effect of Bn-fertili-zer on rapeseed growth and development[J]. China Seed Industry, 2008(S1):14-16.
[29] 张耀文, 李殿荣. 油菜硫营养及其与品质的关系[J]. 中国土壤与肥料, 2002(5):3-7. Zhang YW, Li DR. The sulfur nutrition and the relationship between sulfur nutrition and quality of rape oil[J]. Soils and Fertilizers, 2002(5):3-7.
[30] 王庆仁. 硫肥对双低油菜产量与品质的影响[J]. 植物营养与肥料学报, 1997(1):53-57. Wang QR. Effect of sulfur application on yield and quality of canola double low oilseed rape[J]. Plant Nutrition and Fertilizer Science, 1997(1):53-57.
[31] 袁兆国. 低磷胁迫对双低油菜产量与品质的影响[D]. 扬州:扬州大学, 2007. Yuan ZG. Responses of yield and quality to low-P stress and fertilizer application in a double-low oilseed rape[D]. Yangzhou:Yangzhou University, 2007.
[32] 伊淑丽, 梁颖, 代柳亭, 谌利, 柴友荣, 李加纳. 高温对甘蓝型油菜籽粒后熟相关特性的影响[J]. 西南大学学报:自然科学版, 2008, 30(2):48-50. Yi SL, Liang Y, Dai LT, Chen L, Chai YR, Li JN. Effects of high temperature on post-harvest ripening-related characteristics in Brassica napus L.[J]. Journal of Southwest University:Natural Science Edition, 2008, 30(2):48-50.
[33] Kruger NJ, von Schaewen A. The oxidative pentose phosphate pathway:structure and organisation[J]. Curr Opin Plant Biol, 2003, 6(3):236-246.
[34] Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance[J]. Plant Physiol, 2005, 138(3):1505-1515.
[35] 马梅, 刘冉, 郑春芳, 刘伟成, 尹晓明, 刘金隆, 王长海, 郑青松. 油菜素内酯对盐渍下油菜幼苗生长的调控效应及其生理机制[J]. 生态学报, 2015, 35(6):1837-1844. Ma M, Liu R, Zheng CF, Liu WC, Yin XM, Liu JL, Wang CH, Zheng QS. Regulation of exogenous brassino steroid on growth of salt-stressed canola seedlings and its physiological mechanism[J]. Acta Ecologica Sinica, 2015, 35(6):1837-1844.
[36] Grant CA. The fertilizer requirement of canola production[J]. Sci Food Agric, 1993,61(4):385-387.
[37] Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ. Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis[J]. Plant Physiol, 2002, 128(2):770-779.
[38] Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.)[J]. Mol Cell Proteomics, 2008, 7(1):88-107.
[39] Vogel J, Hübschmann T, Börner T, Hess WR. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids:support for MatK as an essential splice factor 1[J]. J Mol Biol, 1997, 270(2):179-187.
[40] Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci, 2006, 103(35):12987-12992.
[41] Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Mol Biol, 2007, 63(2):289-305.
[42] Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes[J]. New Phytol, 2011, 191(191):37-47.
[43] Hollender C, Liu Z. Histone deacetylase genes in Arabidopsis development[J]. J Integr Plant Biol, 2008, 50(7):875-885.
[44] Fedoroff NV. RNA-binding proteins in plants:the tip of an iceberg?[J]. Curr Opin Plant Biol, 2002, 5(5):452-459.
[45] Fusaro AF, Bocca SN, Ramos RL, Barrôco RM, Magioli C, Jorge VC, Coutinho TC, Rangel-Lima CM, De Rycke R, Inzé D, Engler G, Sachetto-Martins G. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development[J]. Planta, 2007, 225(6):1339-51.
[46] Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiol, 2004, 134(4):1683-1696.
[47] Mittler R. Abiotic stress, the field environment and stress combination[J]. Trends Plant Sci, 2006, 11(1):15-19.
[48] Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A[J]. Proc Natl Acad Sci, 2003, 100(24):13892-13897.
[49] Naora H, Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis:translational modulation or recruitment for extraribosomal activity?[J]. Immunol Cell Biol, 1999, 77(3):197-205.
[50] Szakonyi D, Byrne ME. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana[J]. Plant J, 2011, 65(2):269-281.
[51] Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins[J]. Annu Rev Genet, 1993, 27(1):437-496.
[52] Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology[J]. Annu Rev Physiol, 1999, 61(1):243-282.
[53] Kregel KC. Invited Review:Heat shock proteins:modifying factors in physiological stress responses and acquired thermo tolerance[J]. J Appl Physiol, 2002, 92(5):2177-2186.
[54] Desai NS, Agarwal AA, Uplap SS. HSP:evolved and conserved proteins, structure and sequence studies[J]. Int J Bioin Res, 2010, 2(2):67-87.
[55] Vierling E. The roles of heat shock proteins in plants[J]. Annu Rev Plant Biol, 1991, 42(1):579-620.
[56] Lindquist S. The heat-shock response[J]. Annu Rev Biochem, 1986, 55(1):1151-1191.
[57] Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures a possible role in protecting against chilling injuries[J]. Plant Physiol, 1998, 117(2):651-658.
[58] Ferguson DL, Guikema JA, Paulsen GM. Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress[J]. Plant Physiol, 1990, 92(3):740-746.
[59] Haider A, Badr A, Gatehouse J, Hamoud M, Sammour R, Bouter D. Expression of Ubiquitin during late embryogenesis in pea (Pisurn sativum L.)[J]. Plant Physiol, 1995, 108(2):153-153.
[60] Young TE, Ling J, Geisler-Lee CJ, Tanguay RL, Caldwell C, Gallie DR. Developmental and thermal regulation of the maize heat shock protein, HSP101[J]. Plant Physiol, 2001, 127(3):777-791.
[61] Galat A, Metcalfe SM. Peptidylproline cis/trans isomera-ses[J]. Prog Biophys Mol Biol, 1995, 63(1):67-118.
[62] Whittier JE, Xiong Y, Rechsteiner MC, Squier TC. Hsp90 enhances degradation of oxidized calmodulin by the 20S proteasome[J]. J Biol Chem, 2004, 279(44):46135-46142.
[63] Grune T, Jung T, Merker K, Davies KJ. Decreased pro-teolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease[J]. Int J Biochem Cell Biol, 2004, 36(12):2519-2530.
[64] Asher G, Reuven N, Shaul Y. 20S proteasomes and protein degradation "by default"[J]. Bioessays, 2006, 28(8):844-849.
[65] Voss P, Grune T. The nuclear proteasome and the degradation of oxidatively damaged proteins[J]. Amino Acids, 2007, 32(4):527-534.
[66] Lingard MJ, Bartel B. Arabidopsis LON2 is necessary for peroxisomal function andsustained matrix protein import[J]. Plant Physiol, 2009, 151(3):1354-1365.
[67] Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease[J]. Res Microbiol, 2006, 157(8):701-713.
[68] Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis[J]. Plant Cell, 2004, 16(6):1378-1391.
[69] Davies JM. Vacuolar energization:pumps, shunts and stress[J]. J Exp Bot, 1997, 48(3):633-641.
[70] Huber F, Schnauss J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J. Emergent complexity of the cytoskeleton:from single filaments to tissue[J]. Adv Phys, 2013, 62(1):1-112.
[71] Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants[J]. Plant Cell, 1999, 11(3):431-443.
[72] Ort DR, Baker NR. A photoprotective role for O2 as an alternative electron sink in photosynthesis?[J]. Curr Opin Plant Biol, 2002, 5(3):193-198.
[73] Imlay JA. Pathways of oxidative damage[J]. Annu Rev Microbiol, 2003, 57(1):395-418.
[74] Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review[J]. Ecotox Environ Safe, 2005, 60(3):324-349.
[75] 娜荷雅. 高温对油菜、燕麦和大豆种子生理代谢及衰老的影响[D]. 呼和浩特:内蒙古农业大学, 2008. Na HY. Effect of heat stress on the physiology and aging of three seeds[D]. Hohhot:Inner Mongolia Agricultural University, 2008.
[76] 李玉琴, 赵丹丹, 余永芳, 牛银银, 杨冬之, 臧新. 磷胁迫对油菜幼苗Apase·POD·CAT活性的影响[J]. 安徽农业科学, 2011, 39(16):9548-9550. Li YQ, Zhao DD, Yu YF, Niu YY, Yang DZ, Zang X. Effect of P stress on Apase, POD and CAT activities of rapeseed seedlings[J]. Journal of Anhui Agricultural Sciences, 2011, 39(16):9548-9550.
[77] Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. J Exp Bot, 2002, 53(372):1331-1341.
[78] Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants[J]. Trends Plant Sci, 2004, 9(10):490-498.
[79] Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell and Environ, 2010, 33(4):453-467.
[80] Kristensen BK, Bloch H, Rasmussen SK. Barley coleoptile peroxidases. Purification, molecular cloning, and induction by pathogens[J]. Plant Physiol, 1999, 120(2):501-512.
[81] Passardi F, Penel C, Dunand C. Performing the paradoxical:how plant peroxidases modify the cell wall[J]. Trends Plant Sci, 2004, 9(11):534-540.
[82] Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis[J]. Plant Physiol, 2003, 131(1):317-325.
[83] Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling[J]. J Exp Bot, 2002, 53(372):1283-1304.
[84] Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes[J]. J Exp Bot, 2002, 53(372):1305-1319.
[85] Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell Environ, 2005, 28(8):1056-1071.
[86] Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases[J]. Genome Biol, 2002, 3(3):3004.1-3004.10.
[87] Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities[J]. Nat Struct Biol, 2000, 7(11):1036-1040.
[88] Lönnerdal B, Janson JC. Studies on myrosinases.Ⅱ[STXFZ]. Purification and characterization of a myrosinase from rapeseed (Brassica napus L.)[J]. BBA-Enzymol, 1973, 315(2):421-429.
[89] Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S. β-Glucosidases as detonators of plant chemical defense[J]. Phytochemistry, 2008, 69(9):1795-1813.
[90] Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Masuda T, Shimada H, Takamiya K, Tabata S, Ohta H. Genome-wide expression-monitoring of jasmonate-responsive genes of Arabidopsis using cDNA arrays[J]. Biochem Soc Trans, 2000, 28(6):863-864.
[91] Wasternack C, Hause B. Jasmonates and octadecanoids:signals in plant stress responses and development[J]. Prog Nucleic Acid Res Mol Biol, 2002, 72:165-221.
[92] Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice JC. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions[J]. Plant Physiol, 2008, 147(4):1830-1844.
[93] Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K, Le Dily F, Ourry A, Avice JC. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity[J]. Funct Plant Biol, 2007, 34(10):895-906.
[94] Damaraju S, Schlede S, Eckhardt U, Lokstein H, Grimm B. Functions of the water soluble chlorophyll-binding protein in plants[J]. J Plant Physiol, 2011, 168(12):1444-1451.
[95] Takahashi S, Yanai H, Nakamaru Y, Uchida A, Nakayama K, Satoh H. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble Chl-binding protein from brussels sprouts (Brassica oleracea var. gemmifera)[J]. Plant Cell Physiol, 2012, 53(5):879-891.
[96] Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Pel-tier G. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants[J]. Plant J, 1998, 13(1):97-108.
[97] Gillet B, Beyly A, Peltier G, Rey P. Molecular characte-rization of CDSP 34 a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants and regulation of CDSP 34 expression by ABA and high illumination[J]. Plant J, 1998, 16(2):257-262. |