高级检索+
张倩雯, 丁广大, 王效华, Liu Lei, King John Graham, 徐芳森, 石磊. 植物种子植酸研究进展[J]. 植物科学学报, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814
引用本文: 张倩雯, 丁广大, 王效华, Liu Lei, King John Graham, 徐芳森, 石磊. 植物种子植酸研究进展[J]. 植物科学学报, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814
ZHANG Qian-Wen, DING Guang-Da, WANG Xiao-Hua, LIU Lei, KING John Graham, XU Fang-Sen, SHI Lei. Research Progress on Plant Seed Phytate[J]. Plant Science Journal, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814
Citation: ZHANG Qian-Wen, DING Guang-Da, WANG Xiao-Hua, LIU Lei, KING John Graham, XU Fang-Sen, SHI Lei. Research Progress on Plant Seed Phytate[J]. Plant Science Journal, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814

植物种子植酸研究进展

Research Progress on Plant Seed Phytate

  • 摘要: 磷是植物生长发育所必需的大量营养元素。在种子发育过程中,植酸是磷的贮存库,对维持植物体内磷平衡有重要的作用。在种子萌发过程中,植酸酶分解植酸盐,释放磷、矿质营养和肌醇供幼苗生长。本文综述了近年来植物(作物)种子中植酸的生物合成途径、种子植酸含量的遗传、低植酸作物的育种等研究进展。首先,植酸生物合成途径中最初的反应底物为葡萄糖-6-磷酸,形成肌醇后,以肌醇为底物合成植酸共有两条路径:依赖脂类与不依赖脂类,目前,已分离鉴定若干植酸合成所需的关键酶及其编码基因,包括肌醇-3-磷酸合成酶、肌醇激酶、肌醇多磷酸盐激酶,以及参与植酸运输的ATP结合盒转运子。其次,利用作图群体及关联分析群体,分别在水稻(Oryza sativa L.)、白菜(Brassica rapa L.)、菜豆(Phaseolus vulgaris L.)等植物中鉴定出多个与种子植酸磷含量相关的遗传位点。第三,筛选获得有价值的低植酸突变体是培育低植酸作物的主要途径。当把低植酸作为育种目标时,可能会忽略种子植酸含量的降低给植物带来的不利影响,如何消除低植酸造成的不利影响,成为科学家们亟需解决的问题。

     

    Abstract: Phosphorus (P) is an essential macro-element for higher plant growth and develop-ment. Phytate is the storage form of P in seeds, and plays vitally important roles in P sensing and homeostasis during seed development. Phytate is hydrolyzed by phytases and releases P, mineral nutrients, and myo-inositol for seedling growth during seed germination. This paper reviewed advances in studies, including the biosynthesis pathway of phytic acid, heredity of phytate in seeds, and the breeding of low phytic acid crops. Firstly, glucose 6-phosphate and inositol (Ins) serve as the initial substrates for two pathways to synthesize phytic acid: the lipid-dependent and lipid-independent pathways. Several key genes and enzymes involved in the biosynthesis and transport of phytic acid have been identified, including genes encoding myo-inositol-3-P1 synthase (MIPS), MIK, IPK, and a multi-drug resistance-associated protein (MRP) ATP-binding cassette transporter. Secondly, some genetic loci for seed phytate content have been detected in rice, Brassica rapa, common bean, mung bean and chickpea, using the genetic mapping population and/or genome-wide association panel, respectively. Thirdly, identification of valuable low phytic acid mutants is important for the breeding of low-phytate crops. Once breeding low-phytate crops is a target, scientists can focus on how to reduce the negative effects accompanied by low phytic acid in crops.

     

/

返回文章
返回