[1] 李博, 徐炳生, 陈家宽. 从上海外来杂草区系剖析植物入侵的一般特征[J]. 生物多样性, 2001, 9(4): 217-219.
[2] Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O'Connell C, Wong E, Russel L, Zern J, Aquino T, TsomondoT. Economic and environmental threats of alien plant, animal, and microbe invasions[J].Agr Ecosyst Environ,2001, 84(1): 1-20.
[3] Lodge DM. Biological invasions-lessons for ecology[J].Trends Ecol Evol,1993, 8(4): 133-137.
[4] Williamson M, Fitter A. The varying success of invaders[J].Ecology, 1996, 77(6): 1661-1666.
[5] 王坤, 杨继, 陈家宽. 近缘种比较研究在植物入侵生态学中的应用[J]. 生物多样性, 2009, 17(4):353-361.
[6] Liu H, Stiling P, Pemberton RW. Does enemy release matter for invasive plants? evidence from a comparison of insect herbivore damage among invasive, non-invasive and native congeners[J].Biol Invasions, 2007, 9(7): 773-781.
[7] Mcalpine KG, Jesson LK, Kubien DS. Photosynthesis and water-use efficiency: a comparison between invasive (exotic) and non-invasive (native) species[J].Aust Ecol, 2008, 33(1): 10-19.
[8] Burns JH. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients[J].Divers Distrib, 2004, 10(5-6): 387-397.
[9] Burns JH, Winn AA. A comparison of plastic responses to competition by invasive and non-invasive congeners in the commelinaceae[J].Biol Invasions, 2006, 8(4): 797-807.
[10] Graebner RC, Callaway RM, Montesinos D. Invasive species grows faster, competes better, and shows greater evolution toward increased seed size and growth than exotic non-invasive congeners[J].Plant Ecol, 2012, 213(4): 545-553.
[11] Stricker KB, Stiling P. Seedlings of the introduced invasive shrub Eugenia uniflora(Myrtaceae) outperform those of its native and introduced non-invasive congeners in Florida[J].Biol Invasions, 2013, 15(9): 1973-1987.
[12] Garcia-Serrano H, Cano L, Escarre J, Fleck I, Sans FX. Physiological comparison of alien Senecio inaequidens and S. pterophorus and native S. malacitanus: implications for invasion[J].Flora, 2009, 204(6): 445-455.
[13] Julien MH, Skarratt B, Maywald GF. Potential geographical-distribution of alligator weed and its biological-control by Agasicles hygrophila[J].J Aquat Plant Manage, 1995, 33: 55-60.
[14] 马瑞燕, 王韧. 喜旱莲子草在中国的入侵机理及其生物防治[J]. 应用与环境生物学报, 2005, 11(2): 246-250.
[15] Julien MH, Stanley JN. The management of a alligator weed, a challenge for the new millennium[C]//Proceedings of the 10th Biennial Noxious Weed Conference, New South Wales Deparment of Agriculture, Ballina, NSW, Australia. 1999: 2-13.
[16] Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK, Lu BR, Song ZP. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats[J].Biol Invasions, 2007, 9(3): 245-256.
[17] 潘晓云, 耿宇鹏, Alejandro SOSA, 张文驹, 李博, 陈家宽. 入侵植物喜旱莲子草—生物学、生态学及管理[J]. 植物分类学报, 2007, 45(6): 884-900.
[18] 李扬汉. 中国杂草志[M]. 北京: 中国农业出版社, 1998.
[19] Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener[J].Acta Oecol, 2006, 30(3): 380-385.
[20] Mullet JE, Whitsitt MS. Plant cellular responses to water deficit[J].Plant Growth Regul, 1996, 20(2): 119-124.
[21] Kozlowski TT, Pallardy SG. Acclimation and adaptive responses of woody plants to environmental stresses[J].Bot Rev, 2002, 68(2): 270-334.
[22] Jackson MB, Colmer TD. Response and adaptation by plants to flooding stress[J].Ann Bot, 2005, 96(4): 501-505.
[23] Jackson MB, Ram PC. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence[J].Ann Bot, 2003, 91(2): 227-241.
[24] Voesenek L, Colmer TD, Pierik R, Millenaar FF, Peeters AJM. How plants cope with complete submergence[J].New Phytol, 2006, 170(2): 213-226.
[25] Bailey-Serres J, Voesenek L. Flooding stress: acclimations and genetic diversity[J].Annual Rev Plant Biol, 2008, 59: 313-339.
[26] 张晓平, 方炎明, 陈永红. 淹涝胁迫对鹅掌楸属植物叶片部分生理指标的影响[J]. 植物资源与环境学报, 2006, 15(1): 41-44.
[27] Kutschera U, Kende H. The biophysical basis of elongation growth in internode of deepwater rice[J].Plant Physiol, 1988, 88(2): 361-366.
[28] Gao LX, Geng YP, Li B, Chen JK, Yang J. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation[J].Plant Cell Environ, 2010, 33(11): 1820-1827.
[29] 高乐旋. 不同水陆生境下入侵种喜旱莲子草表型可塑性变异的发生与植物激素信号的关系[J]. 植物学研究, 2014, 3(4): 155-163.
[30] Narita Y, Taguchi H, Nakamura T, Ueda A, Shi WM, Takabe T. Characterization of the salt-indu-cible methionine synthase from barley leaves[J].Plant Sci, 2004, 167(5): 1009-1016.
[31] Bohnert HJ, Jensen RG. Strategies for enginee-ring water-stress tolerance in plants[J].Trends in Biotech, 1996, 14(3): 89-97.
[32] Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher-plants[J].Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 357-384.
[33] 王坤, 杨继, 陈家宽. 不同土壤水分和养分条件下喜旱莲子草与同属种生长状况的比较研究[J]. 生物多样性, 2010, 18(6): 615-621.
[34] Cosgrove DJ. Growth of the plant cell wall[J].Nat Rev Mol Cell Biol, 2005, 6(11): 850-861.
[35] Cosgrove DJ. Water-uptake by growing cells-an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance[J].Int J Plant Sci, 1993, 154(1): 10-21.
[36] Ooume K, Inoue Y, Soga K, Wakabayashi K, Fujii S, Yamamoto R, Hoson T. Cellular basis of growth suppression by submergence in azuki bean epicotyls[J].Ann Bot, 2009, 103(2): 325-332. |