[1] Serrano-Serrano ML, Rolland J, Clark JL, Salamin N, Perret M. Hummingbird pollination and the diversification of angiosperms:an old and successful association in Gesneriaceae[J]. Proc R Soc B-Biol Sci, 2017, 284(1852):20162816.
[2] Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen ZD, et al. Recent accelerated diversification in rosids occurred outside the tropics[J]. Nat Commun, 2020, 11(1):3333.
[3] Castro-Insua A, Gomez-Rodriguez C, Wiens JJ, Baselga A. Climatic niche divergence drives patterns of diversification and richness among mammal families[J]. Sci Rep, 2018, 8(1):8781.
[4] Jaramillo C, Rueda MJ, Mora G. Cenozoic plant diversity in the Neotropics[J]. Science, 2006, 311(5769):1893-1896.
[5] Kerkhoff AJ, Moriarty PE, Weiser MD. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis[J]. Proc Natl Acad Sci USA, 2014, 111(22):8125-8130.
[6] Clinebell RR, Phillips OL, Gentry AH, Stark N, Zuuring H. Prediction of neotropical tree and liana species richness from soil and climatic data[J]. Biodivers Conserv, 1995, 4(1):56-90.
[7] Folk RA, Stubbs RL, Mort ME, Cellinese N, Allen JM, et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation[J]. Proc Natl Acad Sci USA, 2019, 116(22):10874-10882.
[8] Huang XC, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events[J]. Ann Bot, 2020, 125(1):29-47.
[9] Wright S, Keeling J, Gillman L. The road from Santa Rosalia:A faster tempo of evolution in tropical climates[J]. Proc Natl Acad Sci USA, 2006, 103(20):7718-7722.
[10] Hua X, Wiens JJ. How does climate influence speciation?[J]. Am Nat, 2013, 182(1):1-12.
[11] Klein DR, Bruun HH, Lundgren R, Philipp M. Climate change influences on species interrelationships and distributions in high-Arctic Greenland[J]. Adv Ecol Res, 2008, 40:81-100.
[12] Kozak KH, Wiens JJ. Accelerated rates of climatic-niche evolution underlie rapid species diversification[J]. Ecol Lett, 2010, 13(11):1378-1389.
[13] Cooney CR, Seddon N, Tobias JA. Widespread correlations between climatic niche evolution and species diversification in birds[J]. J Anim Ecol, 2016, 85(4):869-878.
[14] Kozak KH, Wiens JJ. Climatic zonation drives latitudinal variation in speciation mechanisms[J]. Proc R Soc B-Biol Sci, 2007, 274(1628):2995-3003.
[15] Cadena CD, Kozak KH, Gomez JP, Parra JL, Mccain CM, et al. Latitude, elevational climatic zonation and speciation in New World vertebrates[J]. Proc R Soc B-Biol Sci, 2012, 279(1726):194-201.
[16] Moritz C, Patton JL, Schneider CJ, Smith TB. Diversification of rainforest faunas:An integrated molecular approach[J]. Annu Rev Ecol Syst, 2000, 31:533-563.
[17] Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography[J]. Ecol Lett, 2007, 10(4):315-331.
[18] Quintero I, Wiens JJ. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades[J]. Global Ecol Biogeogr, 2013, 22(4):422-432.
[19] Sheldon KS, Yang S, Tewksbury JJ. Climate change and community disassembly:impacts of warming on tropical and temperate montane community structure[J]. Ecol Lett, 2011, 14(12):1191-1200.
[20] Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H, et al. Plants versus animals:Do they deal with stress in different ways?[J]. Integr Comp Biol, 2002, 42(3):415-423.
[21] Liu H, Ye Q, Wiens JJ. Climatic-niche evolution follows similar rules in plants and animals[J]. Nat Ecol Evol, 2020, 4(5):753-763.
[22] Xue B, Guo X, Landis JB, Sun M, Tang CC, et al. Acce-lerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae[J]. Mol Phylogen Evol, 2020, 142:106659.
[23] Thomas DC, Chatrou LW, Stull GW, Johnson DM, Harris DJ, et al. The historical origins of palaeotropical intercontinental disjunctions in the pantropical flowering plant family Annonaceae[J]. Perspect Plant Ecol Evol Syst, 2015, 17(1):1-16.
[24] Guo X, Tang CC, Thomas DC, Couvreur TLP, Saunders RMK. A mega-phylogeny of the Annonaceae:taxonomic placement of five enigmatic genera and support for a new tribe, Phoenicantheae[J]. Sci Rep, 2017, 7:7323.
[25] Punyasena SW, Eshel G, Mcelwain JC. The influence of climate on the spatial patterning of Neotropical plant families[J]. J Biogeogr, 2008, 35(1):117-130.
[26] Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, et al. Early evolutionary history of the flowering plant family Annonaceae:steady diversification and boreotropical geodispersal[J]. J Biogeogr, 2011, 38(4):664-680.
[27] Erkens RHJ, Chatrou LW, Maas JW, van der Niet T, Savolainen V. A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America[J]. Mol Phylogen Evol, 2007, 44(1):399-411.
[28] Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314.
[29] Magallon S, Gomez-Acevedo S, Sanchez-Reyes LL, Hernandez-Hernandez T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity[J]. New Phytol, 2015, 207(2):437-453.
[30] Jin Y, Qian HV.PhyloMaker:an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359.
[31] Silva MD, Funch LS, Da Silva LB, Cardoso D. A phylogenetic and functional perspective on the origin and evolutionary shifts of growth ring anatomical markers in seed plants[J]. Biol Rev, 2021, 96:842-876.
[32] Cubino JP, Lososova Z, Bonari G, Agrillo E, Attorre F, et al. Phylogenetic structure of European forest vegetation[J]. J Biogeogr, 2021, 48(4):903-916.
[33] Song HJ, Ordonez A, Svenning JC, Qian H, Yin X, et al. Regional disparity in extinction risk:Comparison of disjunct plant genera between eastern Asia and eastern North America[J]. Global Change Biol, 2021, 27(9):1904-1914.
[34] Paradis E, Claude J, Strimmer K. APE:Analyses of phylogenetics and evolution in R language[J]. Bioinforma-tics, 2004, 20(2):289-290.
[35] Qu YF, Wiens JJ. Higher temperatures lower rates of physiological and niche evolution[J]. Proc R Soc B-Biol Sci, 2020, 287(1931):20200823.
[36] Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees[J]. PLoS One, 2014, 9(2):e89543.
[37] Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, et al. BAMMtools:an R package for the analysis of evolutio-nary dynamics on phylogenetic trees[J]. Methods Ecol Evol, 2014, 5(7):701-707.
[38] Jezkova T, Wiens JJ. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change[J]. Proc R Soc B-Biol Sci, 2016, 283(1843):9.
[39] Jump AS, Penuelas J. Running to stand still:adaptation and the response of plants to rapid climate change[J]. Ecol Lett, 2005, 8(9):1010-1020.
[40] Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude in ectotherms[J]. Proc R Soc B-Biol Sci, 2011, 278(1713):1823-1830.
[41] Wen Y, Qin DW, Leng B, Zhu YF, Cao KF. The physiological cold tolerance of warm-climate plants is correlated with their latitudinal range limit[J]. Biol Lett, 2018, 14(8):20180277.
[42] Chen YJ, Cao KF, Schnitzer SA, Fan ZX, Zhang JL, Bongers F. Water-use advantage for lianas over trees in tropical seasonal forests[J]. New Phytol, 2015, 205(1):128-136.
[43] Erkens RHJ, Chatrou LW, Couvreur TLP. Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales)[J]. Bot J Linn Soc, 2012, 169(1):117-134.
[44] 文印. 基部被子植物水力结构进化及其与光合的关联——几个案例研究[D]. 南宁:广西大学, 2019. |